卢鹏博
发布于 2025-06-01 / 7 阅读
0
0

一个含有反正切函数的经典瑕积分

题目:计算下面积分

\int_{0}^{1}\left(1+\frac{1}{x^2}\right)\arctan ^2x\ dx

分析:首先,x=1是瑕点,但是由于\lim_{x\to 0}\frac{\arctan ^2x}{x^2}=1,故不是瑕积分。之后,经过变量替换,转化为经典的积分。

解:令y=\arctan x,则x=\tan ydx=\sec^2y dy,于是有:

\begin{align*} \int_{0}^{1}\left(1+\frac{1}{x^2}\right)\arctan ^2x\ dx &=\int_{0}^{\frac{\pi}{4}}\left(1+\frac{1}{\tan y^2}\right)y^2\ \sec^2y \ dy=\int_{0}^{\frac{\pi}{4}}\left(\frac{y^2}{\sin^2 y}+\frac{y^2}{\cos^2 y}\right)\ dy\\ &=\int_{0}^{\frac{\pi}{4}}\frac{4y^2}{\sin^2 2y}\ dy=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\left(\frac{t}{\sin t}\right)^2\ dt\\ &=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}x^2d(-\cot x)\\ &=-\frac{1}{2}x^2\cot x\left.\right|_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}x\cot x\ dx\\ &=0+\lim_{x\to 0}\frac{1}{2}x^2\cot x+\int_{0}^{\frac{\pi}{2}}x\ d(\ln|\sin x|)\\ &=x\ln(\sin x)\left.\right|_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}\ln(\sin x)\ dx\\ &=-\int_{0}^{\frac{\pi}{2}}\ln(\sin x)\ dx \end{align*}

对于积分\int_{0}^{\frac{\pi}{2}}\ln(\sin x)\ dx的结果,参见:

https://blog.math-enthusiast.top/archives/1748621987716

因此我们得到

\int_{0}^{1}\left(1+\frac{1}{x^2}\right)\arctan ^2x\ dx=\boxed{\frac{\pi}{2}\ln 2}


评论